1. What is the relationship between \(\angle w \) and \(\angle y \)?
(A) Alternate Interior Angles
(B) Corresponding Angles
(C) Same Side Interior Angles
(D) Vertically Opposite Angles

2. Given two parallel lines and a transversal, which pair of angles are equal?
(A) \(\angle A = \angle C, \angle B = \angle D \)
(B) \(\angle A = \angle E, \angle D = \angle H \)
(C) \(\angle C = \angle E, \angle D = \angle F \)
(D) \(\angle C = \angle D, \angle G = \angle H \)

3. Which figure illustrates that the two lines are NOT parallel given the two angle measures?
(A) Figure 1
(B) Figure 2
(C) Figure 3
(D) Figure 4

4. Given the two parallel lines, determine the measure of \(x \).
(A) \(x = 125^\circ \)
(B) \(x = 135^\circ \)
(C) \(x = 45^\circ \)
(D) \(x = 55^\circ \)
5. Given the two parallel lines, determine the value of \(x \).

\[\begin{array}{c}
\text{x} \\
150^\circ
\end{array} \]

(A) 30° (B) 50° (C) 130° (D) 150°

6. Determine the value of \(x \).

\[\begin{array}{c}
34^\circ \\
35^\circ \\
x
\end{array} \]

(A) 34° (B) 146° (C) 35° (D) 145°

7. What are the correct measures of the indicated measures?

\[\begin{array}{c}
x \\
y 120^\circ \\
z
\end{array} \]

(A) \(\angle x = 60^\circ \), \(\angle y = 60^\circ \), \(\angle z = 120^\circ \)
(B) \(\angle x = 60^\circ \), \(\angle y = 120^\circ \), \(\angle z = 60^\circ \)
(C) \(\angle x = 120^\circ \), \(\angle y = 120^\circ \), \(\angle z = 60^\circ \)
(D) \(\angle x = 120^\circ \), \(\angle y = 60^\circ \), \(\angle z = 120^\circ \)

8. Determine the measure of \(x \).

\[\begin{array}{c}
75^\circ \\
65^\circ \\
x
\end{array} \]

(A) \(x = 40^\circ \)
(B) \(x = 140^\circ \)
(C) \(x = 105^\circ \)
(D) \(x = 75^\circ \)

9. Determine the value of \(x \).

\[\begin{array}{c}
4x + 20^\circ \\
2x + 60^\circ
\end{array} \]

(A) \(x = 10^\circ \)
(B) \(x = 20^\circ \)
(C) \(x = 30^\circ \)
(D) \(x = 40^\circ \)
10. Determine the value of x.

(A) $x = 5^\circ$ (B) $x = 15^\circ$ (C) $x = 10^\circ$ (D) $x = 30^\circ$

11. Determine the measure of $\angle A$.

(A) 80° (B) 60° (C) 40° (D) 20°

12. Determine the value of x.

(A) $x = 10^\circ$
(B) $x = 20^\circ$
(C) $x = 40^\circ$
(D) $x = 60^\circ$

13. Which represents the value of x?

(A) 74° (B) 64° (C) 121° (D) 59°

14. What is the sum of the measures of all the angles in a regular decagon (ten sided figure)?

(A) 1800° (B) 144° (C) 180° (D) 1440°

15. What is the measure of one interior angle in a regular hexagon (six sided figure)?

(A) 1080° (B) 720° (C) 180° (D) 120°

16. How many sides are there in a convex polygon that has the sum of all its interior angles equal to 1260°?

(A) 10 sides (B) 9 sides (C) 8 sides (D) 7 sides
17. Which additional piece of information would allow you to conclude that these triangles are congruent?

(A) AC = DF (B) \(\angle C = \angle F \) (C) AB = EF (D) BC = EF

18. What can you deduce from the congruence statement \(\triangle ABC \cong \triangle DEF \)?

(A) AB = EF (B) AC = EF (C) BC = DE (D) AC = DF

19. What can you deduce from the congruence statement \(\triangle ABC \cong \triangle PQR \)?

(A) \(\angle A = \angle R \) (B) \(\angle B = \angle P \) (C) \(\angle C = \angle R \) (D) \(\angle C = \angle Q \)

20. Which congruence postulate shows that \(\triangle ABC \cong \triangle XYZ \)?

(A) Side – Side – Side Postulate (B) Angle – Side – Angle Postulate

(C) Angle – Angle – Side Postulate (D) Side – Angle – Side Postulate

21. Which piece of information is required to prove that \(\triangle ABC \cong \triangle DCB \) using the SAS postulate?

(A) \(AB = DC \) (B) \(BC = CB \)

(C) \(AC = DB \) (D) \(AB = DB \)

22. Determine the value of x.

\[
\begin{align*}
4x + 28^\circ &= 2x + 32^\circ
\end{align*}
\]
23. Determine the value of x and then determine the measures of both $\angle DOG$ and $\angle DGM$.

\[\triangle DOG \]

\[\angle DOG = 80^\circ \]
\[\angle DGM = 2x - 5^\circ \]
\[\angle OGM = 3x + 45^\circ \]

24. Determine the value of x and the measures of $\angle BCD$ and $\angle CDB$.

\[\triangle BCD \]

\[\angle BCD = 3x + 30^\circ \]
\[\angle CDB = 110^\circ \]
\[\angle BDC = x + 20^\circ \]

25. Determine the value of x for each of the following diagrams.

(a) \[\triangle ABC \]
\[\angle BAC = x + 16^\circ \]
\[\angle ABC = 78^\circ \]
\[\angle BCA = x + 24^\circ \]

(b) \[\parallel \text{lines} \]
\[\angle 1 = 2x + 50^\circ \]
\[\angle 2 = 5x + 14^\circ \]

(c) \[\triangle DEF \]
\[\angle DEF = 3x + 25^\circ \]
\[\angle EDF = 20^\circ \]
\[\angle FDE = x + 55^\circ \]

26. Determine the measure of the missing variables for the following diagram.

(a) \[\triangle ABC \]
\[\angle ABC = 80^\circ \]
\[\angle BAC = 60^\circ \]
\[\angle BCA = 45^\circ \]
\[\angle BDC = 45^\circ \]
\[\angle EDF = a \]
\[\angle ECD = \text{variables} \]
27. Determine the measures of the missing variables for the following diagrams.

(a) \[\begin{align*}
84^\circ & \quad y \quad z \\
62^\circ & \quad x
\end{align*} \]

(b) \[\begin{align*}
115^\circ & \quad p \\
q & \quad w
\end{align*} \]

(c) \[\begin{align*}
100^\circ & \quad x \\
40^\circ & \quad z
\end{align*} \]

(d) \[\begin{align*}
b & \quad a \\
c & \quad d \\
110^\circ
\end{align*} \]

(e) \[\begin{align*}
50^\circ & \quad R \quad Q \\
80^\circ & \quad P
\end{align*} \]

28(a) Determine the measure of one interior angle in the regular octagon below.

(b) The sum of the measures of the interior angles of an unknown polygon is 1980°. Determine the number of sides of this polygon.

(c) The sum of the measures of all the interior angles of an unknown polygon is 1620°. Determine the number of sides in the unknown polygon.
29. Complete the following proof.

Given: WV \parallel YX
Prove: \angle USV = \angle STX

<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>WV \parallel YX</td>
<td></td>
</tr>
<tr>
<td>\angle WST = \angle USV</td>
<td></td>
</tr>
<tr>
<td>\angle WST = \angle STX</td>
<td></td>
</tr>
<tr>
<td>\angle USV = \angle STX</td>
<td></td>
</tr>
</tbody>
</table>

30. Name the congruence postulate (SSS, SAS, ASA, or AAS) and give the congruence statement for the triangles.

(a) [Drawing of triangle ABC with points B, C, D, E, and F]
(b) [Drawing of triangle KNM with points K, L, and M]

31. Given: AB \parallel DE
AC = CE
Prove: \triangle ABC \cong \triangle EDC

<table>
<thead>
<tr>
<th>STATEMENT</th>
<th>REASON</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>1.</td>
</tr>
<tr>
<td>2.</td>
<td>2.</td>
</tr>
<tr>
<td>3.</td>
<td>3.</td>
</tr>
<tr>
<td>4.</td>
<td>4.</td>
</tr>
<tr>
<td>5.</td>
<td>5.</td>
</tr>
</tbody>
</table>
32. Given: \(PR \perp SQ \)
 \(RS = RQ \)

Prove: \(\angle S = \angle Q \)

<table>
<thead>
<tr>
<th>STATEMENT</th>
<th>REASON</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>1.</td>
</tr>
<tr>
<td>2.</td>
<td>2.</td>
</tr>
<tr>
<td>3.</td>
<td>3.</td>
</tr>
<tr>
<td>4.</td>
<td>4.</td>
</tr>
<tr>
<td>5.</td>
<td>5.</td>
</tr>
<tr>
<td>6.</td>
<td>6.</td>
</tr>
</tbody>
</table>
SOLUTIONS

22. x = 20 23. x = 30, \(\angle \text{DOG} = 55^\circ \), \(\angle \text{DGM} = 135^\circ \) 24. x = 15, \(\angle \text{BCD} = 75^\circ \), \(\angle \text{CDB} = 35^\circ \)
25(a) x = 31 (b) x = 12 (c) x = 25 26. a = 45°, b = 55°, c = 55°, d = 135°, e = 45°, f = 65°
27(a) x = 34°, y = 62°, z = 34° (b) p = 65°, q = 50°, w = 65° (c) x = 80°, y = 40°, z = 60°
27(d) a = 110°, b = 110°, c = 70°, d = 70° (e) p = 80°, q = 130°, r = 50°
28(a) sum = 135° (b) n = 13 sides (c) n = 11 sides
29.
<table>
<thead>
<tr>
<th>Statement</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>WV \parallel YX</td>
<td>Given</td>
</tr>
<tr>
<td>(\angle \text{WST} = \angle \text{USV})</td>
<td>Vertically Opposite Angles (X)</td>
</tr>
<tr>
<td>(\angle \text{WST} = \angle \text{STX})</td>
<td>Alternate Interior Angles (Z)</td>
</tr>
<tr>
<td>(\angle \text{USV} = \angle \text{STX})</td>
<td>Transitive Property</td>
</tr>
</tbody>
</table>
30(a) ASA postulate, \(\Delta \text{BCD} \cong \Delta \text{FED} \) (b) SAS postulate, \(\Delta \text{NLK} \cong \Delta \text{NLM} \)
31.
<table>
<thead>
<tr>
<th>STATEMENT</th>
<th>REASON</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (\text{AB} \parallel \text{DE})</td>
<td>1. Given</td>
</tr>
<tr>
<td>2. (\text{AC} = \text{CE})</td>
<td>2. Given</td>
</tr>
<tr>
<td>3. (\angle \text{ABC} = \angle \text{EDC})</td>
<td>3. Alternate Interior Angles (Z)</td>
</tr>
<tr>
<td>4. (\angle \text{ACB} = \angle \text{ECD})</td>
<td>4. Vertically Opposite Angles (X)</td>
</tr>
<tr>
<td>5. (\Delta \text{ABC} \cong \Delta \text{EDC})</td>
<td>5. AAS</td>
</tr>
</tbody>
</table>
32.
<table>
<thead>
<tr>
<th>STATEMENT</th>
<th>REASON</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (\overline{\text{PR}} \perp \overline{\text{SQ}})</td>
<td>1. Given</td>
</tr>
<tr>
<td>2. (\angle \text{SRP} = \angle \text{QRP})</td>
<td>2. Both angles equal 90°</td>
</tr>
<tr>
<td>3. (\overline{\text{RS}} = \overline{\text{RQ}})</td>
<td>3. Given</td>
</tr>
<tr>
<td>4. (\overline{\text{PR}} = \overline{\text{PR}})</td>
<td>4. Same Side</td>
</tr>
<tr>
<td>5. (\Delta \text{SRP} \cong \Delta \text{QRP})</td>
<td>5. SAS</td>
</tr>
<tr>
<td>6. (\angle \text{S} = \angle \text{Q})</td>
<td>6. Definition of Congruent Triangles</td>
</tr>
</tbody>
</table>